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SUMMARY

Several of the models proposed in the literature of unipennate muscles, which have two tendinous sheets
and in-line tendons, cannot meet the criterion of mechanical stability. Based on the theory of Van
Leeuwen & Spoor (Phil. Trans. R. Soc. Lond. B 336, 275-292 (1992)), we discuss how mechanically stable
solutions for (planar) unipennate architectures could be obtained. A mathematical model is proposed in
which the muscle architecture is generated numerically using the principles of mechanical stability and
assuming that all muscle fibres shorten by the same relative amount. The tendinous sheets are attached
tangentially to their respective tendons, as predicted from their low bending stiffness. The curvature,
however, is discontinuous at the junction because of the sudden absence of muscle fibres from
aponeurosis to tendon. In two of the muscle shapes generated, the sheets adjacent to the tendon show a
region of negative curvature connected to a region of positive curvature. A sheet with a concave outer
side is defined to have a negative curvature. In another example, two negative curvature regions are
present with a positive region in-between. We show also a generated shape with a negative curvature of
the sheets over their whole length. A good resemblance was found between the unipennate medial
gastrocnemius muscle of the cat and a simulated architecture. The pressure distribution has also been
calculated. With all muscle fibres exerting the same tensile stress of 200 kPa, a high pressure region is
present in the centre of the muscle belly, half-way along its length. The highest pressures are predicted
for muscles with long tendinous sheets, large attachment angles, and strongly curved fibres. Maximum
pressures (2.40, 9.54, 10.47, and 7.57 kPa for the four discussed examples, and 15.05 kPa for the
simulated gastrocnemius muscle) were at the lower side of the range as predicted previously for
bipennate muscles and the unipennate medial gastrocnemius muscle of man (Van Leeuwen & Spoor
1992).

bending stiffness. Mechanical stability, therefore,
demands that these structures are curved (Van
The structural elements of skeletal muscle bellies (e.g. Leeuwen & Spoor 1992). An intramuscular pressure
tendinous sheets and muscle fibres) have a very low  distribution is generated by curved tendinous sheets

1. INTRODUCTION
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and curved muscle fibres under tension. The concept
of stress and pressure equilibrium throughout the
muscle belly allows to generate quite realistic muscle
shapes as discussed by Van Leeuwen & Spoor (1992).
They obtained mechanically stable solutions for
muscle architectures by equating the pressure devel-
oped by curved muscle fibres with the pressure under
a curved tendinous sheet. Muscle geometry was
generated numerically using the principle of mechani-
cal equilibrium and the functional demand of equal
relative shortening of the muscle fibres. Account was
also taken of the space between neighbouring muscle
fibres. For reasons of simplicity, Van Leeuwen &
Spoor (1992) restricted their analysis mainly to bipen-
nate architectures. They discussed also a unipennate
muscle belly which was curved as a whole and
compared this architecture to that of the medial head
of the human m. gastrocnemius. In this case, the
tendon forces at both sides of the muscle are not in
line, while mechanical equilibrium is realized through
a pressure force at one side of the muscle belly. For
this particular case, virtually the same computational
scheme could be used as for the bipennate architec-
tures.

By extending the theory by Van Leeuwen & Spoor
(1992), we can obtain mechanically stable solutions
for unipennate muscles with in-line tendons. This is
relevant because unipennate models with in-line ten-
dons have been used by several authors (e.g. Huijing
& Woittiez 1984; Woittiez et al. 1984; Otten 1985,
1988; Zajac 1989; Spoor et al. 1991), whereas none of
these models could meet the criterion of mechanical
stability (see Van Leeuwen & Spoor 1992). Our aim is
to increase the understanding of: (1) muscle shape; (ii)
force transmission in the muscle belly; and (iii) the
intramuscular pressurc distribution. Related and
recently reviewed issues as force-length relationships
and dynamical aspects of muscles (see Otten 1988;
Zajac 1989; Van Leeuwen 1992) will not be discussed.

2. SYMBOLS AND DEFINITIONS

Symbols denoted with # represent normalized quanti-
ties.

Ap total cross-section of all muscle fibres in
a muscle belly.

s Che curvature of a muscle fibre (¢e=1/Ry);
idem, but at the muscle centre,
e=0m~ 1

G Cs; Csq  curvature of upper tendinous sheet
(allowed to vary along the sheet;
¢s=1/Ry); idem, but at the muscle
centre; idem, but at s=gq.

i G €q idem, for lower tendinous sheet.

Iy Iy muscle-fibre force; part of fibre force
transmitted to a particular tendon.

Fious muscle force.

Fy internal pressure force exerted on left
half of the muscle belly (figure 2b).

les U muscle-fibre length; length of muscle
fibre at muscle centre.

lis total length of the tendinous sheet.

Phil. Trans. R. Soc. Lond. B (1993)
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intramuscular pressure; idem, but
normalized with respect to the
maximum muscle-fibre stress in the
muscle belly.

intramuscular pressure in muscle centre.
maximum intramuscular pressure; idem
but normalized with respect to the
maximum muscle-fibre stress in the
muscle belly.

pressure component under the upper
tendinous sheet at s=g¢, due to the
tensile stress in the tendinous sheet in
the transverse direction; corresponding
pressure component for lower sheet.
pressurc under upper tendinous sheet at
s=q.

point on upper tendinous sheet.
co-ordinate in a direction perpendicular
to the direction of a muscle fibre.
radius of curvature of a muscle fibre
(assumed to be constant along the fibre).
radius of curvature of the upper
tendinous sheet (allowed to vary along
the sheet); idem, but for the lower
sheet.

radius of curvature of the upper
tendinous sheet at s=¢; idem, for the
corresponding position at the lower
sheet.

position along upper tendinous sheet
(curvilinear co-ordinate).

length of a tendinous sheet between tip
and muscle centre.

tensile force exerted in each of the
tendinous sheets at the muscle centre
(figure 2b).

local tensile force at s=g¢ in the upper
tendinous sheet; idem, at corresponding
position in lower sheet.

exponent in equation (14).

total fibre volume in muscle belly;
volume fraction of muscle fibres with
respect to total muscle volume

(Vf* = Vf/VmuS>'

local volume fraction of muscle fibres.
doubled muscle-fibre volume from s=0
to s=gq.

total interfibre space in muscle belly;
doubled interfibre space from s=0 to
s=gq.

total volume of muscle belly.

doubled volume from s=0 to s=¢

(i.e. Vig+ Viq) (figure 2d).

width of considered muscle slice,
tendinous sheet element or muscle fibre.
attachment angle between lower
tendinous sheet and muscle fibre
(figure 24); idem, but at muscle centre;
idem, but for fibre with s=gq.
attachment angle between upper
tendinous sheet and muscle fibre
(figure 2a); idem, but at muscle centre
(figure 2a); idem, but at s=gq.
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Arg thickness of a muscle fibre.

n local fraction at lower sheet to which
muscle-fibre tissue is attached.

Os; Of; Og tensile stress exerted by a muscle fibre;
idem, but at muscle centre; idem, but
at s=gq.

3. MATERIALS

To check qualitatively our model predictions, we
studied the architecture of the medial gastrocnemius
muscle of the cat. The architecture of this muscle
corresponds closcly to the idealized definition of a
unipennate muscle with in-line tendons. The attach-
ment at the femur is, however, partly muscular, but
more than 95%, of the muscle fibres transmit their
force via the proximal aponeurosis to the femur. The
muscle attaches distally to the calcaneus via the
Achilles tendon. Muscles were taken of cats which
were used in a research project on neuro-regeneration
carried out in the Department of Physiology. The
latter project was approved by the local ethical
committee. The cats were anaesthetized by an intra-
muscular dose of Zolethyl (15mgkg~!, Virbac/
Animed, Barneveld, The Netherlands), before they
were perfused transcardially with 500 ml lukewarm
normal saline, followed by 800 ml citrate buffer
(0.1 m; pH 7.1), containing 1.259, glutaraldehyde and
19, paraformaldehyde. Two muscles were completely
perfused, whereas two other muscles were only per-
fused with the saline solution. The latter muscles were
studied after they were gone into rigor mortis. All
muscles were dissected free by removing the skin and
surrounding tissucs, while the attachments at the
femur and calcaneus were left intact. The muscles
were subscquently frozen while being under tension.
Thereafter, they were sectioned with a freezing micro-
tome (small tretrander, Jung AG, Heidelberg) so that
the central longitudinal plane could be photographed.
The pictures were used to make a comparison with a
numerically generated muscle shape. A drawing was
made of one picture for reproduction in this paper.
The pictures themselves were unsuitable for reproduc-
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tion owing to the low contrast between neighbouring
muscle-fibre bundles.

4. THE MODEL

The calculations in this paper apply to a planar
unipennate muscle model, with two curved peripheral
tendinous sheets and in-line tendons at both sides of
the muscle belly. Similar to Van Leeuwen & Spoor
(1992) we, in fact, consider the middle longitudinal
muscle slice (perpendicular to the tendinous sheets) of
width w (w is small compared to the muscle width; see
figure 1). This slice is assumed to be in mechanical
equilibrium with the neighbouring muscle parts at
both sides. The muscle belly depicted in figure 1 was
qualitatively discussed by Van Leecuwen & Spoor
(1992).

To be able to calculate mechanically stable solu-
tions for unipennate muscle architectures, we make
the following simplifying assumptions:

1. The mechanical influence of the connective and
adipose tissue surrounding the muscle fibres and fibre
bundles is neglected.

2. Each muscle fibre has a constant cross-sectional
arca, a constant tensile stress, and a constant curva-
ture along its length (these propertics arc allowed to
vary among the muscle fibres). A consequence of the
constant curvature assumption (in our two-dimen-
sional approach) is that pressure contours run parallel
to the muscle fibres.

3. The very thin layer with tapering muscle fibres
under the tendinous sheet (denoted as boundary layer
by Van Lecuwen & Spoor 1992) has zero thickness.

4. The tendinous sheets and muscle fibres have no
bending stiffness.

Van Lecuwen & Spoor (1992) discussed these assump-
tions in detail.

In our calculations, we assume that the left and
right halves of the muscle belly have identical shapes
(the two halves are separated by the central muscle
fibre, see figure 2a). Therefore, we can limit our
calculations to one side of the muscle belly only (we

Figure 1. Diagram of a unipennate muscle with in-line tendons (black). The upper tendinous sheet is made
transparent for muscle-fibre bundles. Only a few muscle-fibre bundles are shown (stippled). In this paper, we
consider quantitatively a slice of width w through the muscle belly. Attachment areas of muscle-fibre bundles are
shown also (heavily stippled). A qualitatitve discussion of the three-dimensional mechanical features of this
schematized muscle belly was given by Van Leeuwen & Spoor (1992).

Phil. Trans. R. Soc. Lond. B (1993)
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(2) Some parameters of unipennate muscle model

peripheral muscle

fibre 530

sﬁf

. afc
lower tendinous sheet

s=
7 ﬁfc

central muscle fibre

upper tendinous sheet

( 6) Free-body diagram of left part of unipennate muscle belly

(o)

upper tendinous sheet

interfibre space
lower tendinous sheet

Wa/ 2

Figure 2. () Diagram illustrating some parameters of a unipennate muscle model with in-line tendons as explained
in the text. Note that the attachment angles of the muscle fibres change by different amounts along the upper and
lower tendinous sheets. The dashed line connects the tendons at both sides. (6) Free-body diagram of the left part of
a muscle belly. (¢) Illustration of the interfibre space between subsequent muscle fibres of different orientation and
curvature. (¢) The shaded area depicts the volume V,,/2. Arrow heads point to the transitions between tendinous

sheet and peripheral muscle fibre. See § 2 for symbols.

chose for the left half, see figure 24). However, the
model can be easily expanded to asymmetrical bellies.
This requires muscle halves to be generated of dif-
ferent shape, but with identical boundary conditions
at the muscle centre.

The pressure in the muscle belly is built up along
the tendinous sheets by successive layers of curved
muscle fibres. We assume that the central muscle fibre
is straight, so that the pressure gradient is zero in the
centre. Ambient pressure forces are assumed to be
negligible. The pressure gradient generated by acti-
vated muscle fibres with radius of curvature Ry,
curvature ¢; (= 1/Ry), tensile stress o, and thickness Arp
is given by (Van Leeuwen & Spoor 1992):

5[1/37}: O'f/RfZ OpCp (1)

Let s be a curvilinear co-ordinate describing the
distance along the upper tendinous sheet (s = 0 at the
tip at the left end, s = s, at the muscle centre, and
s = [ at the point of attachment with the tendon, see
figure 24). Let f; be the attachment angle of a muscle
fibre to the upper tendinous sheet, and let oy be the
attachment angle to the lower tendinous sheet. If a
muscle fibre is attached over a distance ds onto the
upper sheet, then the muscle-fibre thickness is sinf;ds.
For the left muscle half, we assume that no spacing is
present between the fibres at their attachments to the
upper tendinous sheet. However, spacing between
the same fibres is present along their length, and at
the attachment to the lower sheet. The situation is
reversed for the right muscle half (for reasons of
symmetry). Generally, both f; and o; vary along the
tendinous sheet. The internal pressure generated by

Phil. Trans. R. Soc. Lond. B (1993)

the muscle fibres at a point ¢ along s is given by (Van
Leeuwen & Spoor 1992):

q Se
P = farcfsinﬁfds = p. — f oresinfeds, 0 < g < s, (2)
0 q

where p. is the pressure at the muscle centre.

The pressure under the upper sheet at a point g
(figure 24) can be expressed in terms of: (i) the
longitudinal tensile force 7., in the tendinous sheet,
the local sheet radius of curvature R, (both T, and
R,, vary along the sheet), and the width w of the slice
through the sheet; (ii) a similar term in the transverse
direction; and (iii) the local muscle-fibre stress oy, and
the local attachment angle B, (Van Leeuwen & Spoor
1992):

sq

= R

The tensile force (along s) at position ¢ in the upper
tendinous sheet can be calculated from the muscle-
fibre stress along the sheet and the attachment angle f;
along the sheet (Van Leeuwen & Spoor 1992):

pq + l’qu + O-fq Sinzﬁfqa 0 < q < Se - (3)

T.=w

q o cosPrsinf;ds

O ey

Se
=T.—w j o cosfesinf;ds,

q

0<g<s, (4)

where 7., the tensile force in each of the tendinous
sheets at the muscle centre, is calculated as:

T.=w j o cosfesinf;ds. (5)
0
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Using equation (4), equation (3) can be rewritten
as:

q
pq = j Op COSﬁ[ Sinﬂf d‘y/qu + pqu + o-fq Sinzﬂfq s
0
0<g<s. (6)

Now, the muscle pressure p. at the muscle centre can
be derived from the local values of the tensile force in
the tendinous sheet per unit width, the sheet curvature
¢, and the muscle-fibre stress ., once the attachment
angle frand tensile stress o of the muscle fibres as well
as the length s, of the upper tendinous sheet at the
left-hand side from the muscle centre are prescribed
(see below and figure 2a). It is assumed that p,, is
either known, prescribed or neglected.

At every position along the upper tendinous sheet
in the left muscle half, the pressure generated by the
muscle fibres (equation 2) should be equal to the
pressure calculated from the tendinous-sheet curva-
ture and tensile force, and the muscle-fibre stress
(equation 6). Hence (Van Leeuwen & Spoor 1992):

q q
j‘ oresinfi ds = j o cosfrsinfirds/R,
0 0

+ Pqu + o-l’q Sinzﬁl‘qs 0 < q < Se (78')

The local radius of curvature of the upper tendinous
sheet is obtained by rearranging equation (7a):

Ry, =

q
f orcosfysinf;ds
0

, 0<g¢<s. (7b)

P
[ oresinrds — pug — 0p sin®Py,
0

Equation (7) shows how the upper tendinous sheet
shape (left from the muscle centre) can be calculated
such that it is compatible with the pressure built up by
successive layers of curved and activated muscle fibres.
For reasons of symmetry, this shape is equal to the
shape of the lower tendinous sheet at the right side of
the muscle centre.

We now need to know how the shape of the lower
tendinous sheet at the left-hand side from the centre
can be calculated. Since the pressure contours are
assumed to run along the muscle fibres (see above),
the pressure under both tendinous sheets is equal at
the two opposite attachments of each particular
muscle fibre. Similar to equation (3), we can write:

qu = 7-'lq/(Rqu) + ptrlq + O-fq n Sinzaqu 0 < q < Ses (8)

where # is the local fraction of the lower aponeurosis
to which muscle fibre tissue is attached. This correc-
tion term is needed because interfibre spaces are
present near the lower sheet. The other parameters
correspond to those for the upper sheet in equation
(3). The required tensile force in the lower sheet
(corresponding to position ¢ at the upper sheet) can be
calculated as

Se
T, = T.+ w | orcosarsinfrds
q

q
=F,—w j o cososinfi;ds, 0<g¢<s, (9
0

Phil. Trans. R. Soc. Lond. B (1993)
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where F,,, is the total muscle force (figure 2). For
convenience, parameter s is used as integrand here
because, along the lower sheet, an a priori unknown
amount of interfibre tissue is assumed to be present
between the muscle fibres (see below and figure 2¢).
For a particular muscle fibre, s has the same value at
both tendinous sheets. Similar to the calculation for
the upper-sheet curvature, the curvature of the lower
tendinous sheet follows now from formulae (2), (8),
and (9):

— 4 f o cososinfiy ds
R = ! ,0< g < 5.

1 ¢
[ oresinfrds — pug — g1 sino, (10)
0

It may be noted that, by introduction of #, we neglect
small-scale variations in sheet curvature due to alter-
nating fibres and inter-fibre spaces.

The total muscle force (figure 2) can be calculated
from:

F..= wj o¢cosPrsinfeds + w j orcosagsinfrds.  (11)
0 0

The first term represents 7., the force built up from
the tip of the sheet to the muscle centre. The second
term denotes the force built up from the muscle centre
to the point of attachment with the tendon.

A single muscle fibre mostly attaches with different
angles on the upper and lower tendinous sheets (or,
better, penetrates the boundary layers at different
angles). This has consequences for the force transmis-
sion of the muscle fibres. The conventional rule that
the force transmission to the aponeurosis equals fibre
force times the cosine of the attachment angle can be
applied to both the upper and the lower aponeurosis.
The muscle-fibre force F is transmitted to the lower
aponeurosis with component Fycosa;, and with com-
ponent Frcosfy to the upper aponeurosis. Since f;
deviates from o for most of the fibres (the central
muscle fibre has equal attachment angles), the forces
transmitted to both sheets are different, although the
tendon forces have the same amplitude at both sides of
the muscle belly (the forces in the longitudinal
direction cancel, see free-body diagram of figure 2a).
For the considered symmetric case, each muscle fibre
in one muscle half has a corresponding fibre in the
other half with exactly opposite effects on the force
transmission. In general, the situation is more com-
plex.

Van Leeuwen & Spoor (1992) defined the effective
pennation angle y; of a muscle fibre in relation to the
transmission of fibre force to muscle-belly force:

ye = arccos(Fy/F), (12)

where Fy is the part of the fibre force being eventually
contributed to the muscle force. This definition cannot
be applied unambiguously to single muscle fibres
of the unipennate muscle belly with in-line tendons.
Although it was not explicitly stated (Van Leeuwen
& Spoor 1992), the forces of single fibres transmit-
ted to both tendons in bipennate architectures are,
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in general, also different (therefore, the choice of a; for
Yr was too simple).

The above set of equations allows to generate
numerically a wide range of mechanically stable
muscle architectures. Only a subset of this range is
expected to correspond to architectures found in
nature. To limit the possible variations, we prescribe
the length of the muscle fibres in the muscle belly:

cos((Br+ o) /2)

b=l
o cosfy.

; (13)
where B = o is the attachment angle at the muscle
centre (figure 2a) and [ is the central muscle-fibre
length. This choice is loosely based on the assumption
that, in an infinitesimal muscle shortening, all muscle
fibres should contract by the same relative amount so
that work by them is produced in proportion to fibre
volume (see Van Leeuwen & Spoor (1992) for a more
detailed discussion). Formula (13) leads to an almost
constant fibre length throughout the muscle belly (see
figure 3e).

The attachment angle ff; was (tentatively) described
as a power function of s:

ﬁf = ﬂfc {S/SC}u;

The attachment angles along the lower tendinous-
sheet part between muscle centre and tendon attach-
ment are calculated during the numerical procedure
(see below). Thus, they are not defined a priori.

Now, the volume distribution of muscle fibres
and interfibre space within the muscle belly will be
considered. The volume of the muscle fibres from two
corresponding regions in the two muscle halves is
given by:

0<s<s. (14)

q
Vig = 2w | [rsinfds. (15)
0

Neighbouring muscle fibres in the muscle belly have
slightly different radii of curvature, different attach-
ment angles, while also the sheet orientation differs
slightly. Therefore, some space is present between the
fibres (figure 2¢). In calculating this space, it is
assumed that the fibres have no space in-between at
the attachments from the tip of the sheet to the muscle
centre. The interfibre space may be filled with
connective tissue, adipose tissue, blood vessels or
nerves. In reality, muscle fibres in a slice parallel to
the central muscle slice may penetrate the interfibre
space of an adjacent slice (Van Leeuwen & Spoor
1992; see also figure 1). Such arrangement has a
positive effect on the packing of the muscle fibres. The
interfibre space V,, associated with the attached fibres
from 5 = 0 till s = ¢ (summed for both muscle halves)
can be obtained by subtracting Vg, from the total
volume ¥, of both halves (figure 2¢) enclosed by the
superficial muscle fibre, the upper tendinous sheet up
to ¢, the muscle fibre at ¢, and the lower tendinous
sheet:

Vi

iq =

I/lq - Vf

q°

(16)

Let V; be the total muscle-fibre volume and let V,,, be

Plal. Trans. R. Soc. Lond. B (1993)
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the total volume of the muscle belly. Then, the global
fractional fibre space V{ is calculated as Vi/V,,, A
local volume fraction of the fibres (Vj,.) was calcu-
lated as half the volume of two neighbouring fibres
divided by this same volume plus the enclosed inter-
fibre volume.

Summarizing, to calculate the shape of a mechani-
cally stable slice of a unipennate muscle belly, the
following strategy was applied:

1. Prescribe the attachment angle along the upper
sheet fy(s) from s = 0 to s = s, using equation (14) and
prescribe the tensile stress distribution in the muscle
fibres.

2. For simplicity, the left half of the muscle belly is
‘mathematically clamped’ at the muscle centre (figure
2b). The clamping (boundary) conditions are pre-
scribed (i.e. tendinous sheet curvature, and muscle
fibre attachment angle and length). The central
muscle fibre is assumed to be straight. Calculations are
made for half a muscle belly only as it is assumed that
both halves have identical shapes and corresponding
muscle fibres exert equal forces.

3. Initially, give a rough estimate of s. (the length
of the upper tendinous sheet from its free end to
the muscle centre). Adjust this length in subse-
quent iterations so as to converge to the required
solution.

4. Starting from the clamping side, calculate (1) the
curvature ¢ (s) for successive muscle fibres such that
the fibre length meets the length criterion of equation
(13) (if this would result in overlap of muscle fibres,
the nearest fibre curvature and length without overlap
is taken), (ii) the corresponding tendinous sheet
curvatures R, and R, using equations (7) and (10), and
(i11) the attachment angle o.

5. Step (4) is stopped and the process restarted at
step (3) if either the gradient in muscle-fibre curvature
falls below or above certain limits, fibres would have
to penetrate each other, or the calculated pressure is
not close enough to zero at the peripheral muscle fibre
boundary. If, however, none of these (ill) conditions
are met, then the calculated architecture is accepted
as a mechanically stable solution.

6. Calculate the tendinous sheet length,
muscle force, muscle volume, fibre volume, interfibre

total

volume, and volume fractions.

With the prescribed attachment angles and fibre
lengths, a unique solution corresponds to a particular
set of clamping conditions.

The above model was implemented in a computer
programme, allowing to simulate force and pressure
development by unipennate muscle bellies.

5. RESULTS AND DISCUSSION

The present model covers an infinite set of solutions
for mechanically stable unipennate muscle architec-
tures. Here, we will discuss a few examples only. For
simplicity, equal tensile stresses of 200 kPa for all
muscle fibres will be used in all simulations in this
paper.
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Table 1. Values of input and output parameters of figures 3, 4, and 5

(The tensile stress of the muscle fibres (gy) was set to 200 kPa for all muscle fibres in all simulations. Furthermore,
the muscle-fibre length at the muscle centre was chosen to be 10 mm (except in figure 5 where it was set to
21.53 mm). The transverse tensile stress in the tendinous sheets was neglected in all simulations. Other parameter
values (per unit width where applicable) are given below.)

figure numbers

symbol unit 3 4a,b 4¢ 4d 5b,¢
input
Coe m~! — 4.651 —9.091 — 5.587 — 24.272 —11.112
Bre ° 7.5 15.0 15.0 15.0 20.5
u 1.1 1.1 0.7 0.7 1.4
output
Vs mm? 47.12 93.08 100.05 58.00 476.10
Vi 0.462 0.464 0.532 0.420 0.397
Ar mm 2.175 4.318 5.331 2.448 8.788
Se mm 17.47 17.42 17.42 8.00 29.77
ls mm 34.90 34.70 34.34 14.73 58.72
Frous (mN mm~1) 430.6 829.7 1024.2 466.6 1621.5
T. (mN mm 1) 216.6 424.6 523.1 240.2 853.1
Denax kPa 2.40 9.54 10.47 7.57 15.05
Dovax 0.0120 0.0477 0.0524 0.0378 0.0753

(a) Unipennate model with moderate attachment
angles of muscle fibres

(1) Starting conditions

In most muscles at optimum length for force output,
attachment angles of the muscle fibres are below 25°
(cf. Spoor et al. 1991; Wickiewicz el al. 1983). Figure 3
illustrates the results of a simulation of a unipennate
muscle model with moderate angles of attachment
of the muscle fibres (parameter values are given in
table 1). The chosen value of only 7.5° for f at the
muscle centre can already be considered as moderate,
especially as it is accompanied with a maximum
attachment angle of almost 12.5°. The influence of the
transverse tensile stress in the tendinous sheets was
neglected (i.e. f,q = puq = 0 in equations 3, 6, 7, 8,
and 10).

(i1) Muscle-fibre arrangement

Figure 3a shows how the muscle fibres are arranged
in the muscle belly. In the left half of the muscle belly,
o is larger than f; owing to fibre curvature and
particular orientations of the tendinous sheets (figures
3¢,d). This leads to a concentration of interfibre space
in the muscle belly close to the two tendons (figure 3e).
The calculated total volume fraction of the muscle
fibres is only about 0.46 for this particular architec-
ture. This unrealistically low value i1s a direct con-
sequence of the two-dimensional approach. Van
Leeuwen & Spoor (1992) discussed how, in a real
muscle, this problem may be solved by penetration of
muscle fibres from the lateral sides into the interfibre
spaces. Figure 3¢ shows that the local muscle-fibre
fraction increases from about O at the tip (left side) of
the peripheral tendinous sheet to about 0.86 in the
muscle centre. Muscle-fibre length varies only slightly
along the muscle belly (figure 3¢), with the minimum
found at the muscle centre. The ideal muscle-fibre
length is everywhere equal to the calculated fibre

Phil. Trans. R. Soc. Lond. B (1993)

length. The maximum fibre curvature is about
21 m~1.

(iii) The tendinous sheets

The curvature of the tendinous sheets has a value
of about 12 m~! at the tip, drops to the (prescribed)
value of — 4.6 m~' at the muscle centre (the global
minimum), has a local maximum of — 4.18 m~' at
s~ 20.3mm and a local minimum of — 4.20m~'
at s &~ 20.6 mm, and attaches to the tendon with a
curvature of only — 0.02m~?! (figure 3¢). Owing to
the limited graphical resolution, not all details can be
seen in figure 3¢. The tendinous sheets attach tangent
to their respective tendons, as expected from their low
bending stiffness. The curvature, however, is dis-
continuous at the junction. This is explained by the
sudden absence of attaching muscle fibres from apo-
neurosis to tendon. The last pressure term of equation
(8) vanishes suddenly from aponeurosis to tendon. A
jump in the pressure from ambient to the muscle belly
can only be avoided if the jump in the last pressure
term is compensated by a counteracting jump in the
first term (the second term was neglected in the
simulations), requiring a negative sheet curvature at
the junction.

(iv) Intramuscular pressure

The maximum pressure, located at the centre of the
muscle, is 2.40 kPa. Figure 34 shows pressure contours
(relative to the maximum pressure) in the muscle
belly. The pressure increases monotonically from the
peripheral muscle fibres at both sides towards the
muscle centre. The pressure gradient (dp/ds) along the
upper sheet increases from the left peripheral muscle
fibre, reaches a maximum, and decreases again to
zero in the muscle centre, and becomes negative in
the right muscle half (figure 3f, see also the varying
widths between the pressure contours in figure 3b).
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Figure 3. Illustration of the results of a simulation of a unipennate muscle architecture, with 600 muscle fibres used
in numerical evaluation. Values of input and output parameters are given in table 1. () Muscle-fibre arrangement.
At each side of the central muscle fibre, 10 fibres are shown, chosen at regular intervals along the upper (left side)
and lower (right side) tendinous sheets. Arrow heads point to the transitions between tendinous sheet and peripheral
muscle fibre. (4) Illustration of intramuscular pressure distribution in muscle belly. Contours show values of pressure
in fractions of maximum pressure. The dashed line connects the tendons at both sides in (2) and (b). (¢) Muscle-fibre
curvature ¢ and tendinous-sheet curvature ¢, as a function of the position along the tendinous sheet s. (d)
Attachment angles B¢ and oy as a function of 5. (¢) Actual and ideal (equation 13) muscle-fibre lengths as a function
of s (the curves overlap completely, normal curves). Local volume fraction of muscle fibres Vi, as a function of s
(thin curve). (f) Intramuscular pressure and pressure gradient dp/ds as a function of s. Further explanation is given
in the text.
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The absolute value of the pressure gradient is low near
the peripheral muscle fibres because of the small
attachment angles. Its low value at the muscle centre
is caused by the small fibre curvatures (see also
equation 2).

(b) Unipennate simulations with large attachment
angles of muscle fibres

Figures 4a,b illustrate the fibre arrangement and
normalized pressure contours for a simulation of a
muscle belly with large attachment angles (parameter
values in table 1). The central attachment angle was
set to 15°, twice the value of figure 3. Other clamping
conditions were chosen so as to generate tendinous-
sheet lengths similar to those of figure 3. We do not
show graphs for this muscle belly because they are of
virtually identical shape as those of figure 3. Doubled
amplitudes, however, occur compared with figures
3c,d, whereas the amplitudes of figure 3f are quad-
rupled. Compared with figure 3, the following
differences should be noted:

1. On average, the tendinous-sheet curvatures are
about doubled. The almost doubled central curvature
(table 1) was needed to generate a tendinous sheet
length of comparable magnitude to figure 3.

2. Muscle-fibre curvatures are about doubled along
the peripheral tendinous sheets. By doubling both the
fibre curvature and the fibre area, the pressure
generated by the muscle fibres is about quadrupled
(cf. equation 2). Of course, the pressure over the
tendinous sheet (equation 3) should also be about
quadrupled. The doubled attachment angles with the
sheet lead also to an almost doubled tensile force 7, in
the sheet (cf. equation 4). This leads, together with
the doubled sheet curvature, to a quadrupled first
term in equation (3). The second term was neglected
and needs no further consideration. The third term is
also about quadrupled by the doubled attachment
angles. The maximum pressure in the muscle centre is
about 9.54 kPa.

3. The length variation of the muscle fibres along
the muscle belly is slightly larger, which corresponds
to the stronger variation in a;and f (cf. equation 13).

4. The calculated total volume fraction of the
muscle fibres is only about 0.46 for this particular
architecture, which is again unrealistically low (but
see the discussion by Van Leeuwen & Spoor 1992).
The local fibre fraction is similar to that of figure 3e.

Figure 4¢ shows the muscle-fibre arrangement for
a simulation with equal input data as used in figures
4a,b, except that a value of 0.7 for parameter u
(equation 14) was used instead of 1.1, while also a
weaker negative central curvature of the tendinous
sheets was applied so as to obtain similar sheet lengths.
This leads, on average, to larger attachments angles
along the sheet, resulting in a slightly higher maxi-
mum pressure (i.e. 10.47 kPa) in the muscle centre. It
also leads to a different shape of the tendinous sheets,
which now have two regions of negative curvature
(concave outward), with a positive region in-between
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(figure 4¢). Note again the slightly negative curvature
of the sheet next to the tendon.

Figure 4d shows the muscle-fibre arrangement for a
simulation with equal input data as used in figure 4c,
except that a stronger negative central curvature of
the tendinous sheets was chosen so as to obtain much
shorter sheet lengths. This results in a lower maximum
pressure (i.e. 7.57 kPa) in the muscle centre. The
tendinous sheets have now a negative curvature over
their whole length (figure 4f). The curvature of the
sheet drops sharply towards the connection to the
tendon. Close to the tendon, the third term in
equation (8) is rather large because the attachment
angle is quite large, while, at the same time, the
interfibre space is less than for the other muscle bellies
(i.e. n is relatively large; about half way along the
fibres, most interfibre space is found between the
superficial muscle fibres, see double arrow heads in
figure 4d ). Therefore, a rather strong compensation of
the third pressure term is needed by the first term,
which requires a rather strong negative curvature of
the sheet close to the tendon.

The above comparison illustrates the prediction by
Van Leeuwen & Spoor (1992) that the intramuscular
pressure depends strongly on the architecture of the
muscle. As explained by Van Leeuwen & Spoor
(1992), the intramuscular pressure and force equilib-
rium are size independent (if the shape is constant), so
that the muscle bellies of figures 3 and 4 can be
enlarged or reduced to almost any particular size
without an effect on the internal pressure.

(¢) Medial gastrocnemius muscle of the cat

In the fixed specimens, the muscle-fibre bundles in
the central region of the medial gastrocnemius of the
cat were slightly, but unequivocally, S-shaped. This is
in contrast to our assumption of a straight fibre in the
central region. Most likely, the fixatives stiffen the
endo- and perimysium so that relatively more force is
transmitted perpendicular to the longitudinal direc-
tion of the muscle fibres. The altered force transmis-
sion may be an important cause of the S-shape. This
viewpoint is supported by the rigor-mortis prepara-
tions, where this phenomenon was virtually absent.
Therefore, rigor muscles were used for our comparison
between muscle and model.

Figure 5a shows a drawing of the muscle-fibre
arrangement in the central longitudinal plane of the
medial gastrocnemius of the cat. The muscle was
under tension and in rigor mortis before it was frozen
and sectioned. The tendons at both ends are almost in
line. A small deviation is understood from the par-
tially muscular attachment at the femur. Only a small
fraction of the muscle fibres run exactly in the exposed
plane. Most of the drawn fibre directions are therefore
composed of several parts of muscle fibres.

Figure 56 shows the fibre arrangement of a simu-
lated muscle belly which is based on the distal half of
the medial gastrocnemius (parameter values are given
in table 1). The parameters were adjusted by hand
until a satisfactory resemblance was obtained between
muscle section and simulation. It would be unwise to
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Figure 4. Hlustration of the results of simulations of unipennate muscle architectures with larger attachment angles
than in figure 3 (for values of input and output parameters sce table 1), leading to more highly pennated muscle
bellies. (a) Fibre arrangement in belly similar to figure 3, but with doubled attachment angle. (4) The same belly as
in (@), but now with normalized pressure contours. (¢) Fibre arrangement of simulation similar to («), but with a
value of 0.7 for exponent « in equation (14), resulting in quite dramatic changes in the tendinous sheet curvature
(sce plot e); two regions with negative curvature and a positive region in-between are now present. (d) Fibre
arrangement similar to (c¢), but with a much shorter muscle belly. Now, the tendinous shect is negatively curved
along its whole length (see plot f). Double arrow heads point to position of maximum spacing between superficial
fibres. See text for further explanation.
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(&) Drawing of section through medial gastrocnemius muscle of the cat

Achilles tendon

proximal aponeurosis

( #) Muscle-fibre arrangement in simulated muscle belly
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Figure 5. Comparison between the medial gastrocnemius muscle of the cat and a simulation. (a) Traces of the muscle-
fibre directions and the shapes of the aponcuroses in the main longitudinal plane from a picture of a rigor-mortis
muscle. The muscle was put under tension before it was frozen and sectioned. () Simulation of the muscle-fibre
arrangement resembling that of the distal (left) half of (). (¢) Intramuscular pressure contours as a fraction of the
maximum pressure (15.05 kPa) of the same simulation. Arrow heads in () and (¢) point to the transitions between
tendinous sheets and peripheral muscle fibres. The values of the input and output parameters are given in table 1.

aim at a perfect agreement because we did not include
the three-dimensional arrangement of the muscle
fibres, and we ignored the transverse tensile stress in
the tendinous sheets. The proximal simulated muscle
half deviates rather strongly from the cat muscle
owing to our left-right symmetry assumption, and the
complex attachment in the cat.

Figure 5¢ shows the simulated pressure distribution,
which looks rather similar to that of figure 4b. The
pressure levels, however, are significantly higher with
a maximum pressure of 15.05 kPa in the muscle centre
(using again 200 kPa for the fibre stress). The higher
pressures are mainly the consequence of the larger
attachment angles of the muscle fibres. Petrovsky &
Hendershot (1984) measured the pressure in the
medial gastrocnemius of the cat. Unfortunately, they
specified the location of the pressure transducer in the
muscle only qualitatively. At full activation and under

Phil. Trans. R. Soc. Lond. B (1993)

isometric conditions, they obtained a maximum pres-
sure ‘in the belly . . " of about 23 kPa. This value is
in remarkable agreement with our calculations. The
fibre stress of 200 kPa is probably lower than the
maximum attainable isometric stress. Stresses of up to
300 kPa seem the upper limit, which would result in
an upper estimate of 22.5 kPa. At the same time, the
measurements are likely to overestimate the real
pressure because the presence of a transducer tends to
increase the local pressure (Gregg & Eckstein 1941).

6. GENERAL DISCUSSION
(a) Some determinants of muscle architecture

Muscle architecture is at least influenced by: (i) the
size and shape of neighbouring structures; (ii) mini-
mum requirements for shortening and work output by
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each of the muscle fibres; (iii) mechanical stability;
and (iv) the requirement of a close packing of the
muscle fibres.

An example of the first influence is the spherical eye
in cichlid fish around which the m. adductor mandi-
bulae (a jaw muscle) has to fit without unfavourable
mechanical interactions (Otten 1981). The present
model and that of Van Leeuwen & Spoor (1992) seem
to be useful tools in an analysis of the required
architectural features. Another example is the gastroc-
nemius muscle in man which curves around the
underlying tibia and soleus muscle (Van Leeuwen &
Spoor 1992).

The second and the third factor are essential
elements of the present model. As discussed by Van
Leeuwen & Spoor (1992), the fourth requirement
cannot easily be combined with the second one in a
two-dimensional analysis. This is demonstrated by the
calculated volume fraction of the fibres, which was too
low as compared to a real muscle. The muscle fibre
curvatures and orientations, required for the demands
of mechanical stability and pennation angle-length
relationship (equation 13), do not allow a close
enough fit of neighbouring muscle fibres. In a three-
dimensional muscle-fibre arrangement, this problem
can easily be solved by allowing neighbouring muscle
fibres from both sides to penetrate into the spaces
between the series of longitudinally arranged muscle
fibres (see Van Leeuwen & Spoor 1992). To allow an
optimal filling of the muscle belly with muscle fibres,
tendinous sheets should converge in width from the
free edge to their connection with the tendon (figure
1). This arrangement allows also a ‘smooth’ transition
from tendinous sheet to tendon. The local volume
fractions of the muscle fibres as shown in figure 3e
give an indication of the required width of the lower
sheet relative to the upper sheet (in a three-dimen-
sional arrangement with an optimal filling of muscle
fibres).

In predicting unipennate muscle shapes, we aimed
to select the most important parameters, while (quan-
titatively) confining ourselves to a two-dimensional
analysis. Nevertheless, we think that our approach has
led to an increased understanding of the shapes of
muscles. Future, more advanced models may illumi-
nate the limitations of our present judgements.

(b) Intramuscular pressure and blood flow

In the present simulations, we calculated maximum
intramuscular pressures (using a muscle-fibre stress of
200 kPa for all fibres) in the range of 2.4 to 15.0 kPa.
These pressures are on average somewhat lower than
the pressures calculated for bipennate muscle bellies
of comparable lengths in a previous study (Van
Leeuwen & Spoor 1992). In the bipennate muscles,
pressure is built up along the whole tendinous sheet,
whereas only half the length of the muscle belly is used
for the unipennate case. Furthermore, the muscle-fibre
curvatures were, on average, largest in the compar-
able bipennate bellies. Therefore, during sustained
contractions, continuation of blood flow through the
muscle belly seems to be somewhat less problematic
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for unipennate muscle than for bipennate muscles of
comparable length, height and fibre curvatures.
Nevertheless, maximum pressures are high enough to
obstruct blood flow in sustained contractions (blood
pressure is about 4.5 kPa at the entrance of the
capillaries, e.g. Charm & Curland 1974).

The maxima of the presently calculated pressures
are lower than the pressure found in a simulation of
the unipennate m. gastrocnemius medialis of people
(Van Leeuwen & Spoor 1992). The human gastrocne-
mius is curved as a whole, resulting in tendons which
are not in line. Furthermore, pressure is built up along
the whole length of the muscle belly, which is
comparable with the situation in bipennate muscles.
The presently calculated maximum pressures for
bellies with in-line tendons are smaller than those
recorded for unipennate gastrocnemius and soleus
(which is also likely to build up pressure over most of
its length) by Petrovsky & Hendershot (1984).

In the recording of force-length diagrams of the
gastrocnemius in the rat, the distal tendon is usually
attached to the transducer, while the muscle is pulled
rather straight (e.g. Woittiez e/ al. 1984). Most likely,
this treatment transforms this fairly curved muscle
into a belly with in-line tendons. This may alter
significantly the position and magnitude of the high
pressure centre in the muscle. The influence on the
force production of the changed geometry is not very
clear, but may be quite small. Experiments comparing
the in siu mechanics with the mechanics of the
straightened muscle belly are needed to settle this
issue.

7. GONCLUSIONS

1. By extending the approach of Van Leeuwen &
Spoor (1992), mechanically stable unipennate muscle
architectures with in-line tendons were calculated.
The internal pressure distribution is calculated from
curved muscle fibres and tendinous sheets under
tension.

2. Four determinants for unipennate architectures
were distinguished: (i) influences from neighbouring
structures; (ii) mechanical stability; (iii) generation
of roughly equal specific power output and relative
length change of the muscle fibres; and (iv) a close
packing of the muscle fibres in the muscle belly.

3. The curvature of the tendinous sheets in unipen-
nate muscles can be quite variable along the sheet.
Regions of negative (concave outer surface) and
positive (convex outer surface) curvatures may be
present along one sheet.

4. As previously stated for bipennate muscles, the
maximum intramuscular pressure generated depends
on shape characteristics like attachment angles of
muscle fibres, but not on the size of the muscle.
The highest pressures are predicted for muscles with
long tendinous sheets, large attachment angles, and
strongly curved fibres.

5. A good qualitative resemblance was obtained
between the observed shape of the central longitudinal
plane of the medial gastrocnemius muscle of the cat
and a simulation (figure 5).
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6. Intramuscular pressures can be high enough (up
to 15.05 kPa in the simulation of the medial gastrocne-
mius muscle of the cat) to obstruct blood flow. With
the present model, the amplitude and location of
high-pressure centres in unipennate muscles can be
predicted.
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